Product Description


Gears for Travel Motor & Swing Motor available:

Planet Carrier Assy,Travel Gear Assembly,Swing Gear Assembly,Ring Gear,Swing Gear,Swing Shaft,Sun Gear, Center Shaft,

Gear Drive/Gear Center,Shaft Pinion,Travel Motor Shaft,Planet Shaft,Planet Gear,RV Gear,Traveling Eccenter Carrier,Eccenter

Shaft,Motor Shaft Gear,Travel Crank Shaft,Travel Motor Casing,Swing/Travel Pinion,Needle Bearing,Ball Bearing,Shaft Pin,HUB,

Flywheel Gear Ring etc..

Excavator 2nd Planetary Sun Gear CLG 923D Excavator Parts Sun Gear For Swing Motor Final Drive

For Excavator Application CLG 923D
Name Sun Gear Quality Good quality
Color / Material Cast iron
Brand Xihu (West Lake) Dis.an Weight 2.6kg
MOQ 1 pcs Payment T/T, Paypal, WU, Trade assurance or as required
Packing case Delivery 1-5 days
Structure Gear Shipment By air/by sea/by DHL/FEDEX/UPS/TNT

More Related Products

20Y-26-22110 Gear Sun 1
20Y-26-22120 Gear Planetary 1
20Y-26-22131 Gear Sun 2
20Y-26-22141 Gear Planetary 2
20Y-26-22240 Pin Planetary 1
20Y-26-22250 Pin Planetary 2
20Y-27-21280 Pin Lock Planetary 1 & 2
20Y-26-21280 Needle Roller Bearing Planetary 1
20G-26-11240 Needle Roller Bearing Planetary 1
20Y-26-22230 Plate Thrust Upper Sun Upper
20Y-26-22220 Plate Thrust Upper Sun Lower
20Y-26-21240 Plate Thrust Lower Sun
20Y-27-21240 Plate Thrust Upper / Lower Planetary
20Y-26-21141 Shaft Propeller
20Y-26-22160 Carrier Planetary 1
20Y-26-22170 Carrier Planetary 2
20Y-26-22150 Gear Internal / Ring Gear
PC200-6-SD-CA-1 Carrier Assembly Stage I
PC200-6-SD-CA-2 Carrier Assembly Stage II
04064-5715 Ring Snap / Ring Retaining
20Y-26-22191 Cover
20Y-26-22210 Case / Housing
57110-81045 Bolt – Cover
57110-62060 Bolt – Case / Housing
112-32-11211 Bolt; Shoe – Thrust Plate
01643-31032 Washer
01643-32060 Washer
20Y-26-22420 Seal Oil
20Y-26-22270 Ring
20Y-26-22330 Bearing Roller 1
20Y-26-22340 Bearing Roller 2
07000-15240 O Ring
07000-05240 O Ring

More Models

Motor brand Motor model
NABTESCO GM02 GM03 GM04 GM05 GM06 GM09 GM18 GM21 GM35 GM60 GM85 GM06VA GM07VC GM08 GM09VN GM10VA GM15 GM17 GM18VL GM20 GM21VA GM23 GM28 GM35VL GM38VB GM40VA GM45VA GM50VA GM60VA GM70VA GM85VA
NACHI PHV-1B PHV-2B PHV-3B PHV-4B PHV80 PHV-120 PHV-190 PHV80 PHV120 PHV190 PHK1B PHK80 PHK100 PHK120 PHK190
KAYABA/KYB MAG-9N MAG-10V MAG-10VP MAG-16N MAG-16V MAG-18V MAG-18VP MAG-26 MAG-33V MAG-37NV MAG-55KP MAG-85NP MAG-85VP MAG-120P MAG-150VP
EATON JMV016 JMV018 JMV571 JMV571 JMV041 JMV044 JMV047 JMV053 JMV067 JMV076 JMV118 JMV147 JMV168 JMV155 JMV173 JMV185 JMV274
TM SERIES TM02 TM02E TM03 TM03A TM03CJ TM04 Tm04A Tm04I Tm05 TM06N TM06NK Tm06 TM06K Tm06H Tm06F Tm07 Tm09 TM09E TM09VC Tm18 Tm22 Tm22C TM40A Tm40

More Suppliable Travel Motor Assy

Type Machine Model Type Machine Model
GM03  PC30-7 PC40-7   E312
      312B
GM05V GM06 PC50UU-1 PC50   312C
GM07 DH55 R60-7 SH60 SY60   312D
GM09 TM09 TM10 PC60-7 PC75UU-1/3 SK60 HD250-7 SH75 SH80 S60 DH80 R80 E307C   315L
GM18 PC100-6 PC120-6 PC130-7 PC128UU-1 DH150 R150-7 R160-7 SY150   320C
GM35 TM40 DX225LC DH220-5 S225 EC210B R225-7 R210-3 R210-7 CX160B JMV-147 DX225-7 JY210E   320D
  PC30 PC38UU   325B
  PC200-3   325D 325C
  PC200-6 6D95   E325L
  PC200-6 6D102   330B
  PC200-7   E330C
  PC210-8   307C
  PC220-7   308 BSR
  PC228US-2   308C
  PC300-6   308D
  PC300-7   318B
  PC400-6   E318C
  PC400-7 GM10Y-B-30-1 E70B
  PC450-7   EC160B
  EX40 EX50   EC210 EC210BLC
  EX60-1   EC240B
  EX75   EC290BLC
  EX100-1   EC360 EC360BLC
  EX100-2   EC460 EC460BLC
  EX200-1 MAG-26VP-310-2  
  EX200-2 MAG-33VP-550F-6 FR60-7 SWE70,6ton excavator
  EX200-5 MAG-33VP-480  
  ZX70 MAG-33VP-450  
  ZX110 ZX120 MAG-26VP-320  
  ZX160-1 MAG85  
  ZX160-3 MAG-170VP-2400  
  ZX200 MAG-170VP-3400E-7  SY215CAI4K SH215-X2
  ZX200-3 MAG-170VP-3600E-4 LQ15V0000007F2 SK235, SK230-6
  ZX270 ZX270-3 MAG170VP-3800G-K1 LQ15V0571F1  
  ZX330 ZX330-3G MAG-230VP-6000  
  Zx450LC ZX450-3 MSF-150VP-6-1  
  R140-7 M4V290-170F LC15V00026F2 M4V290F-RG6.5F LC15V0571F2 SK350-8
  R290LC-7 MAG170VP-30 JS235   
  R300-5 MAG-170VP-5000-7 HD1430-III
  R360-7 M3V290/170A-RG6 SH300-3
  SK200LC-1/2/3   SH450L
  SK200-5   SH75
  SK200-6   JS200
  SK200-6E   JS240
  SK200-8   S220
  SK220-3   S230
  SK250-8   SY330
  SK330LC-6E   SY360
HMA20BA UH07-5 UH10LC    

Product Show

More Excavator Spare Parts

Engine Assembly Final Drive Assy Hydraulic Pump Gear Pump
Swing Motor Travel Motor Fan Motor Electrical Parts
Swing Gearbox Travel Gearbox Relief Valve Distribution Valve
Available Engine Parts Radiator Main Valve Belt
Liner Kit Piston Piston Ring Engine Bearing
Cylinder Block Gasket Kit Gasket Head Crankshaft
Valve Valve Seat Valve Xihu (West Lake) Dis. Nozzle
Bearing Accelerator Motor Transmitter Pressure Switch
Flameout Solenoid Monitor Fan Cooling Oil Filter

We could supply the following models

Cooperative Brands

Available Model

HYUNDAI

R55 R60 R80 R130LC-3-5 R200 R200-5 R210 R215-7/9 R220-5 R225LC-7/9 R290 R290 R290LC-7 R300LC R305LC R330LC R375 R360LC-7 R450LC

ZXAIS/HITACAI

EX35 EX40 EX55 EX60 EX60-3 ZX200 ZX210 ZX250 ZX290 ZX330 ZX470 EX1000 EX1200

VOLVO

EC55 EC60 EC140BP EW145BP EW160BB EC210 EC240 EC290 EC360LC EC380.EC460 EC480 EC700

CATERPILLAR

CAT305.5 CAT306 CAT307 CAT308 CAT312 CAT315 CAT320 CAT323 CAT324 CAT325 CAT326 CAT330 CAT336 CAT345 CAT349 CAT365 CAT374 CAT390

KOMATSU

PC45 PC50 PC55 PC56 PC60-5-6-7 PC60-8 PC70-8 PC78 PC100-3 PC120-6 PC130-7 PC200-7/8 PC220 PC270 PC240 PC300-6/7 PC360 PC400-6/7/8
PC450-6 PC600-6 PC650-3 PC650 PC800 PC1000 PC1200 PC1250

KOBELCO

SK35 SK50 SK60 SK75 SK100 SK120 SK200-1-2-3-4-5-6 SK230 SK250 SK260 SK280 SK300 SK330 SK330-6 SK350 SK400 SK450 SK480

DOOSAN/DAEWOO

DH35 DH55 DH60 DH55 DH60 DH80 DH80-7 DH80GOLD DH150 DH200 DH220-3-5 DH280-5 DX60-DX200-DX225 DX260 DH290 DH360 DH420 DH500

SUMITOMO

SH55 SH60 SH75 SH50 SH100 SH120 SH200 SH200-3-5 SH220-2-3 SH280 SH300 SH350 SH400 SH450

KATO

HD820 HD1571 HD1430 HD2045 HD700

SANY

SY55 SY60 SY65 SY70 SY75 SY85 SY95 SY115 SY135 SY155 SY195 SY200 SY205 SY215 SY220 SY225 SY235 SY245 SY285 SY305 SY335 SY365 SY375
SY395 SY415 SY485

LIUGONG

CLG904 CLG9055 CLG906 CLG907 CLG9075 CLG908 CLG915 CLG150 CLG920 CLG921 CLG922 CLG225 CLG924 CLG925 CLG933 CLG936 CLG939 CLG942
CLG948 CLG950 CLG952 CLG200 CLG205 CLG220 CLG225

KUBOTA

KX135 KX185 KX155 KX161 KX163 KX165 KX183

IHI

IHI35 IHI50 IHI60 IHI55 IHI80 IHI100

 

XE55 XE60 XE65 XE75 XE80 XE85 XE135 XE150 XE155 XE200 XE205 XE215 XE225 XE245 XE270 XE305 XE335 XE370 XE380 XE400 XE470 XE490
XE700

YANMAR

ViO35 ViO55 ViO75

CASE

CX50 CX55 CX58 CX75 CX210 CX240 CX290 CX330

YUCHAI

YC35 YC50 YC55 YC60 YC65 YC85 YC135 YC230

JCB

JS130 JS210 JS220 JS290 JS330

Company Profile

HangZhou Xihu (West Lake) Dis.an Machinery Equipment Co., Ltd

HangZhou Xihu (West Lake) Dis.an Machinery Equipment Co. Ltd. is a professional supplier for hydraulic breaker parts and excavator parts and OEM hydraulic seals manufacturer. We specialize in completed seal kits and separate seals for hydraulic breaker and excavator more than Ten years in HangZhou, China. Koko Shop supply almost all brands breakers’ parts like Seal kits, Diaphragm, Piston, Chisel, Wear Bush upper and lower, Rod Pin, Through Bolts, Side Bolts, Control Valve,Front Head, Cylinder, Accumulator, N2 Gas Charging Kit, etc. We insist on high quality parts with genuine and OEM after market replacement parts.
Specializes in:                
–Excavator spare parts                
–Hydraulic breaker part

FAQ

Q1.How will you guarantee the quality?
We will test and send testing video to buyer confirm before shipping.

Q2.When will you shiporder?
Once we get cpnfirmation of payment,we will try to our best to ship within 24 hours.

Q3.How long it will take to delivery tomy adress?
The normal delivery time is 5-7 days,depend on which city and transport method.

Q4.How can I track my order?
Once yourorder in shipped,we will e-mail you shipping details.

Q5.If I was not satisfied with the products,can I return goods?
Yes,we offer exchangex and repair service in the warranty time.

After-sales Service: on Line
Warranty: 3 Months
Type: Sun Gear
Application: Excavator
Certification: CE, ISO9001: 2000
Condition: New
Customization:
Available

|

Customized Request

sun gear

How does a sun gear contribute to the overall efficiency of a gear arrangement?

A sun gear plays a significant role in determining the overall efficiency of a gear arrangement. Let’s explore how a sun gear contributes to the efficiency of a gear system:

  • Power Transmission:

The sun gear serves as the primary driver in many gear systems, transmitting power from the input source to the output component. Its contribution to power transmission efficiency is crucial. A well-designed sun gear ensures minimal power loss during the transfer of rotational force.

Efficiency is influenced by factors such as gear material, surface finish, and lubrication. The sun gear’s design, including its tooth profile, size, and alignment with other gears, affects the smoothness of power transmission, minimizing energy losses due to friction and misalignment.

  • Load Distribution:

The interaction between the sun gear and other gears, such as planet gears or ring gears, influences load distribution within the gear arrangement. An efficient sun gear design ensures that the load is evenly distributed across all engaged gears, reducing the stress on individual gear teeth.

Uniform load distribution helps prevent premature wear and damage to the gears, enhancing overall efficiency and extending the gear system’s lifespan. By efficiently distributing the load, the sun gear contributes to a more balanced distribution of forces within the gear arrangement.

  • Reduced Friction and Wear:

The sun gear’s smooth operation is vital for minimizing friction and wear within the gear system. When the sun gear meshes with other gears, such as planet gears or ring gears, it should have proper tooth engagement and alignment.

An accurately designed sun gear reduces sliding friction and ensures a rolling contact between the gear teeth. This rolling contact reduces wear, heat generation, and energy losses due to friction. By minimizing friction and wear, the sun gear enhances the overall efficiency of the gear arrangement.

  • Optimized Gear Ratios:

The sun gear’s size and its relationship to other gears in the arrangement significantly impact the gear ratios. Efficient gear ratios are essential for achieving the desired output speed and torque in a gear system.

An optimized sun gear design, along with carefully selected sizes for other gears, allows for efficient gear ratio selection. This ensures that the gear system operates within the desired speed and torque range, maximizing the overall efficiency of the arrangement.

  • Minimized Energy Losses:

An efficient sun gear design aims to minimize energy losses within the gear arrangement. Energy losses can occur due to factors such as friction, misalignment, and inefficient power transmission.

By focusing on factors like gear tooth profile, material selection, lubrication, and proper alignment, the sun gear can contribute to the reduction of energy losses. Minimizing energy losses improves the overall efficiency of the gear arrangement, ensuring more effective utilization of input power.

  • System Optimization:

The sun gear’s contribution to the overall efficiency of a gear arrangement is part of a broader system optimization process. Engineers consider various factors, including gear design, material selection, lubrication, and operating conditions, to maximize the efficiency of the entire gear system.

The sun gear, as a vital component, is optimized in conjunction with other gears and system parameters to achieve the desired efficiency levels. Its design and performance directly impact the overall efficiency of the gear arrangement.

In conclusion, the sun gear’s contribution to the overall efficiency of a gear arrangement lies in its role in power transmission, load distribution, friction reduction, optimized gear ratios, and minimizing energy losses. By considering these factors and optimizing the sun gear’s design, engineers can enhance the efficiency and performance of gear systems in various applications.

sun gear

How do you calculate gear ratios involving a sun gear in planetary systems?

Calculating gear ratios in planetary systems involving a sun gear requires considering the number of teeth on the gears and their arrangement. Understanding the calculation process helps in determining the gear ratio and predicting the rotational relationship between the input and output gears. Here’s an explanation of how to calculate gear ratios involving a sun gear in planetary systems:

  • Step 1: Identify the Gears: In a planetary system, identify the gears involved, namely the sun gear, planet gears, and ring gear. The sun gear is the gear at the center, surrounded by the planet gears, which in turn engage with the outer ring gear.
  • Step 2: Count the Teeth: Count the number of teeth on each gear. The sun gear, planet gears, and ring gear all have a specific number of teeth. Let’s denote these as Ts (sun gear teeth), Tp (planet gear teeth), and Tr (ring gear teeth).
  • Step 3: Determine the Gear Ratio: The gear ratio in a planetary system involving a sun gear is calculated using the following formula:

Gear Ratio = (Tp + Tr) / Ts

  • Step 4: Interpret the Gear Ratio: The calculated gear ratio represents the rotational relationship between the input (sun gear) and output (ring gear) gears. For example, if the gear ratio is 2:1, it means that for every two revolutions of the sun gear, the ring gear completes one revolution in the opposite direction.
  • Step 5: Adjust for Multiple Planet Gears or Fixed Components: In some cases, planetary systems may involve multiple planet gears or fixed components. The presence of multiple planet gears affects the gear ratio, and the inclusion of fixed components alters the gear engagement and behavior. These factors may require additional calculations or adjustments to accurately determine the gear ratio.

In summary, calculating gear ratios involving a sun gear in planetary systems necessitates identifying the gears, counting the teeth on each gear, and applying the appropriate formula. The resulting gear ratio provides insights into the rotational relationship between the sun gear and the ring gear. It’s important to consider any additional elements, such as multiple planet gears or fixed components, that may influence the gear ratio calculation.

sun gear

What are the advantages of using a sun gear in a planetary gear set?

The utilization of a sun gear in a planetary gear set offers several advantages, contributing to the popularity and wide range of applications of this gear configuration. Understanding the specific benefits of using a sun gear helps in appreciating its advantages in mechanical systems. Here’s an explanation of the advantages of using a sun gear in a planetary gear set:

  • Torque Amplification: One of the significant advantages of a planetary gear set with a sun gear is its ability to amplify torque. By arranging the sun gear, planet gears, and an outer ring gear, torque can be multiplied or reduced depending on the specific gear ratio configuration. This torque amplification feature is particularly useful in applications where high torque output is required, such as automotive transmissions and heavy machinery.
  • Compact Design: Planetary gear sets with a sun gear often enable a more compact and space-efficient design. The central positioning of the sun gear, along with the arrangement of other gears, allows for a reduction in overall size while maintaining efficient power transmission. This compactness is advantageous in applications with limited space or weight restrictions, where a smaller and lighter gear system is desirable.
  • High Gear Ratios: The presence of a sun gear in a planetary gear set facilitates the attainment of high gear ratios. By manipulating the sizes and arrangements of the sun gear, planet gears, and ring gear, a wide range of gear ratios can be achieved. This flexibility in gear ratio control enables planetary gear sets to provide various output speeds and torque levels, allowing for customization based on the specific requirements of the mechanical system.
  • Load Distribution: The sun gear’s engagement with multiple planet gears in a planetary gear set allows for load distribution among the gears. This distributed load-sharing characteristic helps in reducing the load on individual gears, resulting in improved reliability and longevity of the gear system. It also enables efficient power distribution and helps prevent excessive wear and stress on any single gear within the system.
  • Directional Control: Planetary gear sets with a sun gear provide versatile directional control. By fixing or holding the sun gear while the ring gear or planet carrier is driven, the gear system can achieve different output directions, such as forward or reverse rotation. This directional control feature adds flexibility to mechanical systems, allowing for a wide range of applications that require bidirectional power transmission.
  • Multiple Output Shafts: Another advantage of using a sun gear in a planetary gear set is the possibility of having multiple output shafts. By incorporating additional planet gears and output shafts, a planetary gear set with a sun gear can deliver power to multiple outputs simultaneously. This feature is beneficial in applications that require power distribution to multiple subsystems or components within a complex mechanical system.

In summary, the advantages of using a sun gear in a planetary gear set include torque amplification, compact design, high gear ratios, load distribution, directional control, and the potential for multiple output shafts. These advantages make planetary gear sets with a sun gear well-suited for a wide range of applications, including automotive, aerospace, machinery, robotics, and more.

China factory Excavator 2ND Planetary Sun Gear Clg 923D Excavator Parts Sun Gear for Swing Motor Final Drive supplier China factory Excavator 2ND Planetary Sun Gear Clg 923D Excavator Parts Sun Gear for Swing Motor Final Drive supplier
editor by CX 2023-09-15