Product Description

 

 

        Click Here Get More Information        

Our Advantages

 

Equipment
3-axis, 4-axis and full 5-axis processing equipment, CNC lathe, centering machine, turning and milling compound, wire cutting, EDM, grinding, etc

Processing
CNC machining, CNC Turning, CNC Milling, Welding, Laser Cutting, Bending, Spinning, Wire Cutting, Stamping, Electric Discharge Machining (EDM), Injection Molding

Materials
Aluminum, metal, steel, metal, plastic, metal, brass, bronze, rubber, ceramic, cast iron, glass, copper, titanium, metal, titanium, steel, carbon fiber, etc

Tolerance
+/-0.01mm, 100% QC quality inspection before delivery, can provide quality inspection form

Quality Assurance
ISO9001:2015, ISO13485:2016, SGS, RoHs, TUV
Tolerance

Surface Treatment

Aluminum parts Stainless Steel parts Steel parts Brass parts
Clear Anodized Polishing Zinc Plating Nickel Plating
Color Anodized Passivating Oxide black chrome plating
Sandblast Anodized Sandblasting Nickel Plating Electrophoresis black
Chemical Film Laser engraving Chrome Plating Oxide black
Brushing Electrophoresis black Carburized Powder coated
Polishing Oxide black Heat treatment  

 

Machining Workshop

                 Production Process                

                Quality Guarantee                

 

        Click Here Get Free Quotation       

 

Application industry

CNC Machining Parts Can Be Used in Many Industry

Aerospace/ Marine/ Metro/ Motorbike/ Automotive industries, Instruments & Meters, Office equipments, Home appliance, Medical equipments, Telecommunication, Electrical & Electronics, Fire detection system, etc

 

Areospace

Cylinder Heads, Turbochargers, Crankshafts, Connecting Rods Pistons, Bearing Caps, CV Joints, Steering Knuckles, Brake Calipers,Gears,Differential Housing, Axle Shafts

 

Auto&Motorcycle

Cylinder Heads, Turbochargers, Crankshafts, Connecting Rods Pistons,Bearing Caps, CV Joints, Steering Knuckles, Brake Calipers,Gears, Differential Housing, Axle Shafts

 

Energy

Drill Pipes and Casing, Impellers Casings, Pipe Control Valves, Shafts, Wellhead Equipment, Mud Pumps, Frac Pumps, Frac Tools,Rotor Shafts and disc

 

Robotics

Custom robotic end-effectors, Low-volume prototype, Pilot, Enclosures, Custom tooling, Fixturing

 

Medical Industry

Rotary Bearing Seal Rings for CHINAMFG Knife,CT Scanner Frames,Mounting Brackets,Card Retainers for CT Scanners,Cooling Plenums for CT Scanners,Brackets for CT Scanners,Gearbox Components,Actuators,Large Shafts

 

Home Appliances

Screws, hinges, handles, slides, turntables, pneumatic rods, guide rails, steel drawers

 

Certifications

FAQ

Q1. What kind of production service do you provide?
CNC machining, CNC Turning, CNC Milling, Welding, Laser Cutting, Bending, Spinning, Wire Cutting, Stamping, Electric Discharge Machining (EDM), Injection Molding, Simple Assembly and Various Metal Surface Treatment.

Q2. How about the lead time?
Mould : 3-5 weeks
Mass production : 3-4 weeks

Q3. How about your quality?
♦Our management and production executed strictly according to ISO9001 : 2008 quality System.
♦We will make the operation instruction once the sample is approval. 
♦ We will 100% inspect the products before shipment.
♦If there is quality problem, we will supply the replacement by our shipping cost.

Q4. How long should we take for a quotation?
After receiving detail information we will quote within 24 hours

Q5. What is your quotation element?
Drawing or Sample, Material, finish and Quantity.

Q6. What is your payment term?
Mould : 50% prepaid, 50% after the mould finish, balance after sample approval.
Goods : 50% prepaid, balance T/T before shipment.

Application: Fastener, Auto and Motorcycle Accessory, Hardware Tool, Machinery Accessory, Aerospace/ Marine/Automotive/Medical Equipments
Standard: GB, EN, China GB Code
Surface Treatment: Anodizing,Polishing,Brushing, Plating, Oxide Black
Production Type: Mass Production
Machining Method: CNC Machining, Turning, Milling, Forging
Material: Nylon, Steel, Plastic, Brass, Alloy, Copper, Aluminum, Iron, Customized
Samples:
US$ 0.8/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

sun gear

Can sun gears be used in automotive applications?

Sun gears are widely used in various automotive applications, playing crucial roles in different systems. Let’s explore the automotive applications where sun gears are commonly employed:

  • Automatic Transmissions:

Sun gears are integral components of automatic transmissions in vehicles. Automatic transmissions use planetary gear systems, where the sun gear is one of the key elements. The interaction between the sun gear, planet gears, and ring gear allows for different gear ratios and smooth shifting between gears.

In automatic transmissions, the sun gear is driven by the engine’s input shaft and transmits power to the other gears. By controlling the engagement of various clutches and brakes within the transmission, the sun gear enables seamless gear changes, optimizing vehicle performance and fuel efficiency.

  • Transfer Cases:

In four-wheel-drive and all-wheel-drive vehicles, transfer cases distribute power between the front and rear wheels. Sun gears are utilized in transfer cases to facilitate power transfer and gear reduction.

The sun gear, along with other gears and components, helps control the torque distribution and gear ratios between the front and rear axles. This allows vehicles to adapt to different driving conditions, such as slippery surfaces or off-road terrain, enhancing traction and stability.

  • Starter Motors:

Sun gears are employed in starter motors, which are responsible for cranking the engine during startup. Starter motors use a gear reduction mechanism to convert the electric motor’s high-speed rotation into a higher torque output.

The sun gear, along with other gears like the planetary gears, enables the gear reduction necessary to generate sufficient torque to crank the engine. This gearing arrangement allows for efficient and reliable engine starting, even in challenging conditions.

  • Power Seats and Windows:

Sun gears can also be found in power seat and power window mechanisms in vehicles. These systems use electric motors to adjust seat positions or operate windows.

The sun gear, along with other gears and mechanisms, converts the rotational motion of the electric motor into linear movement, enabling precise adjustments of seat positions or smooth operation of windows. The use of sun gears ensures reliable and efficient functionality of these systems.

  • Other Automotive Systems:

Sun gears may also have applications in other automotive systems. For example, they can be found in power steering systems, where they contribute to the gear reduction and power transmission required for smooth steering operation.

Furthermore, sun gears can be utilized in various auxiliary systems, such as cooling fans, HVAC (heating, ventilation, and air conditioning) systems, and engine accessories. These applications leverage the sun gear’s ability to facilitate power transmission and gear reduction, enhancing the efficiency and performance of these systems.

In summary, sun gears are extensively used in automotive applications, including automatic transmissions, transfer cases, starter motors, power seats and windows, power steering systems, and auxiliary systems. Their presence in these systems enables crucial functions such as gear shifting, power distribution, gear reduction, and efficient power transmission. Sun gears contribute to the overall performance, reliability, and functionality of automotive systems, enhancing the driving experience and vehicle efficiency.

sun gear

Can sun gears be used in high-torque applications?

Sun gears can indeed be used in high-torque applications and are commonly employed in various mechanical systems that require substantial torque transmission. The design and characteristics of sun gears make them capable of handling significant torque loads. Here’s an explanation of why sun gears can be used in high-torque applications:

  • Central Positioning: Sun gears are typically located at the center of planetary gear arrangements. This central positioning allows them to distribute torque to multiple planet gears, which then transfer the torque to the outer ring gear. The central position of the sun gear enables efficient torque transmission and load sharing among the gears, making it suitable for handling high-torque applications.
  • Torque Amplification: The arrangement of sun gears in a planetary gear system allows for torque amplification. By utilizing the interaction between the sun gear, planet gears, and ring gear, the gear system can multiply or reduce torque based on the gear ratio configuration. In high-torque applications, this torque amplification capability of sun gears is advantageous as it allows for the multiplication of input torque, resulting in higher torque output.
  • Sturdy Construction: Sun gears are designed to withstand high torque forces. They are usually made from durable materials such as hardened steel or other alloys with high tensile strength. This robust construction ensures that sun gears can effectively handle the transmitted torque without experiencing excessive wear or deformation.
  • Load Distribution: The interaction between the sun gear, planet gears, and ring gear in a planetary gear system enables effective load distribution. By distributing the torque across multiple planet gears, the load is shared, reducing the stress on individual gears. This load distribution mechanism enhances the overall durability and torque-handling capacity of the gear system, making it suitable for high-torque applications.
  • Customizable Gear Ratios: Sun gears in planetary systems allow for the customization of gear ratios. By changing the number of teeth on the sun gear, planet gears, and ring gear, as well as their relative sizes, the gear ratio can be tailored to meet specific application requirements. This flexibility in gear ratio control enables the optimization of torque output for high-torque applications.

In summary, sun gears can be effectively used in high-torque applications due to their central positioning, torque amplification capability, sturdy construction, load distribution mechanism, and customizable gear ratios. These characteristics make sun gears reliable and suitable for transmitting substantial torque in various mechanical systems.

sun gear

How does a sun gear affect the overall gear ratio in a system?

The presence and characteristics of a sun gear play a significant role in determining the overall gear ratio in a system. Understanding how the sun gear affects the gear ratio helps in analyzing and designing gear systems with the desired performance. Here’s an explanation of how a sun gear affects the overall gear ratio in a system:

  • Number of Teeth: The number of teeth on the sun gear influences the gear ratio. In a simple gear system, where the sun gear engages with a single gear, the gear ratio is determined by the ratio of the number of teeth on the two gears. For example, if the sun gear has 10 teeth and the other gear has 30 teeth, the gear ratio would be 1:3, meaning the output gear rotates three times slower than the sun gear.
  • Arrangement with Other Gears: In more complex gear systems, such as planetary gear configurations, the arrangement of the sun gear with other gears further influences the gear ratio. In a planetary gear set, the sun gear engages with multiple planet gears and an outer ring gear. By manipulating the sizes and arrangements of these gears, a wide range of gear ratios can be achieved. For instance, if the sun gear is fixed, the ring gear becomes the output and the gear ratio is determined by the relative sizes of the sun gear, planet gears, and ring gear.
  • Planet Gears: The number of planet gears in a planetary gear system also affects the gear ratio. Increasing or decreasing the number of planet gears alters the gear ratio by changing the load distribution and the interaction between the sun gear and the ring gear. More planet gears generally result in a higher gear ratio, while fewer planet gears tend to reduce the gear ratio.
  • Epicyclic Gear Trains: The arrangement of gears in an epicyclic gear train, which includes the sun gear, planet gears, and ring gear, allows for even more complex gear ratios. By fixing or holding certain gears while others are driven, various gear ratios can be achieved. For example, fixing the ring gear and driving the sun gear produces a different gear ratio compared to fixing the sun gear and driving the ring gear.
  • Variable Gear Ratio: In some systems, the gear ratio can be varied by changing the position or speed of the sun gear. This can be achieved using mechanisms such as adjustable clutches or continuously variable transmissions (CVTs). By modifying the engagement between the sun gear and other gears, the gear ratio can be adjusted to optimize performance for different operating conditions.

In summary, the presence and characteristics of a sun gear, including the number of teeth, its arrangement with other gears, the presence of planet gears, and the overall gear system configuration, all contribute to the determination of the gear ratio. Understanding these factors allows for the design and control of gear systems with specific gear ratios to meet the requirements of various mechanical applications.

China Good quality CNC Machining Turning Part Starter Shaft Spline Pinion Custom Precision Transmission Planetary Sun Drive Spur Gear cycle gearChina Good quality CNC Machining Turning Part Starter Shaft Spline Pinion Custom Precision Transmission Planetary Sun Drive Spur Gear cycle gear
editor by CX 2023-11-01